
Brain-inspired Trustworthy Hyperdimensional

Computing with Efficient Uncertainty Quantification

Yang Ni1, Hanning Chen1, Prathyush Poduval2, Zhuowen Zou1, Pietro Mercati3, and Mohsen Imani1∗

1University of California Irvine, 1,2University of Maryland, 3Intel Labs
∗Corresponding author: m.imani@uci.edu

Abstract—Recent advancement in emerging brain-inspired
computing has pointed out a promising path to Machine Learning
(ML) algorithms with high efficiency. Particularly, research in the
field of HyperDimensional Computing (HDC) brings orders of
magnitude speedup to both ML model training and inference
compared to their deep learning counterparts. However, current
HDC-based ML algorithms generally lack uncertainty estimation,
despite having shown good results in various practical appli-
cations and outstanding energy efficiency. On the other hand,
existing solutions such as the Bayesian Neural Networks (BNN)
are generally much slower than regular neural networks and
lead to high energy consumption. In this paper, we propose
a hyperdimensional Bayesian framework called DiceHD, which
enables uncertainty estimation for the HDC-based regression
algorithm. The core of our framework is a specially designed
HDC encoder that maps input features to the high dimensional
space with an extra layer of randomness, i.e., a small number
of dimensions are randomly dropped for each input. Our key
insight is that by using this encoder, DiceHD implements Bayesian
inference while maintaining the efficiency advantage of HDC. We
verify our framework with both toy regression tasks and real-
world datasets. We compare our DiceHD to several widely-used
BNN baselines in terms of performance and efficiency. The results
on CPU show that DiceHD provides comparable uncertainty
estimations while achieving significant speedup compared to the
BNN baseline. We also deploy DiceHD on two FPGA platforms
with different acceleration capabilities, showing that DiceHD

provides up to 84× (3740×) better energy efficiency for training
(inference).

I. INTRODUCTION

In the past ten years, research in the area of deep learning

observed the fast growth of Deep Neural Network (DNN)

based algorithms. We have seen that DNNs fundamentally

change how machine learning interacts with our daily life

through their advancements in natural language processing,

object detection, and reinforcement learning. However, the

complexity of DNNs and the computation cost of using

such networks have also been increasing significantly. This

inevitably leads to a surge of power consumption for training

and inference, which essentially contrasts with the power limit

and efficiency requirements of edge computing. Compared

to the human brain, DNN-based algorithms are surprisingly

inefficient, albeit the fact that neural networks are bio-inspired

to start with.

Therefore, novel brain-inspired computing methods such

as Spiking Neural Networks (SNN) and HyperDimensional

Computing (HDC) are gaining traction because of their better

efficiency [1], [2] and robustness against hardware noise [3]. In

particular, HDC mimics human brain functionalities by learn-

ing and reasoning in high-dimensional spaces with lightweight

operations [4], [5]. This is supported by the finding that

information on sensory inputs is stored in the cerebellum

cortex using high-dimensional neural activity patterns [6].

To enable HDC operations, inputs from the original low-

dimensional space are encoded to vectors with thousands of di-

mensions, i.e., hypervectors. HDC-based algorithms, equipped

with lightweight computations, are usually easily parallelizable

using off-the-shelf hardware accelerators so that the efficiency

is further improved [7]. Prior works [1] show that HDC pro-

vides a significant efficiency boost over other widely-deployed

ML algorithms such as DNN and Support Vector Machine

(SVM). Recent research brings this advantage of HDC to dif-

ferent kinds of learning tasks like classification/clustering [8]–

[10], regression [11] and reinforcement learning [12]–[14],

and it enables low-latency training and inference with less

power consumption. However, current HDC algorithms are not

without limitations.

We observed that HDC-based ML algorithms still lack

the ability to provide uncertainty along with regular

prediction. This ability is a must for safety-critical tasks

where the importance of model trustworthiness and robustness

are particularly emphasized [15]. For example, self-driving

cars should make conservative decisions with high confi-

dence. Predictions without uncertainty can lead to catastrophic

consequences. This is not only a challenge for HDC but

also for DNN because both mainly evolved without Bayesian

statistics. Different from regular ML, Bayesian inference pa-

rameters have a probability distribution instead of a single

value. This key difference enables the analytical expression of

the posterior distribution and predictive distribution through

Bayes’ Theorem. The advantage of Bayesian statistics is that

the posterior predictive distribution accounts for the noise of

observation, model stochasticity, and prior knowledge about

the task. Prior research works try to incorporate this advantage

into the DNN learning process and propose several Bayesian

Neural Networks (BNN) algorithms [16]–[19]. However, to

approximate Bayesian statistics, expensive modifications are

necessary for the original network structure or the training

and inference processes. Unfortunately, existing BNN algo-

rithms bring more computations and larger energy costs in

the learning, compared to already complex DNNs. We believe

the lightweight HDC with uncertainty estimation is a more

20
23

 IE
EE

/A
CM

 In
te

rn
at

io
na

l C
on

fe
re

nc
e

on
 C

om
pu

te
r A

id
ed

 D
es

ig
n

(IC
CA

D)
 |

 9
79

-8
-3

50
3-

22
25

-5
/2

3/
$3

1.
00

 ©
20

23
 IE

EE
 |

 D
O

I:
10

.1
10

9/
IC

CA
D5

73
90

.2
02

3.
10

32
36

57

Authorized licensed use limited to: Access paid by The UC Irvine Libraries. Downloaded on August 27,2024 at 07:31:27 UTC from IEEE Xplore. Restrictions apply.

efficient alternative to existing BNN algorithms. We find that

introducing random noise to the HDC encoding process effec-

tively approximates the posterior distribution. This functions

as the key to Bayesian inference while keeping the whole

framework as lightweight as possible.

In this paper, we propose DiceHD, a hyperdimensional

Bayesian framework that enables efficient uncertainty estima-

tion for HDC-based regression algorithm. Our contributions

are summarized as follows:

• Through DiceHD, we overcome a major limitation in exist-

ing HDC-based ML methods, i.e., the inability to provide

uncertainty estimation. Previously, without model confi-

dence, the usability of HDC regression algorithms is limited

in safety-critical tasks. DiceHD, as it incorporates Bayesian

statistics, opens up new opportunities such as more efficient

exploration in optimization.

• We revisit the recent HDC regression algorithm and draw

a connection to the more general Vector Function Archi-

tecture [20]. In essence, we encode the input to a high

dimensional space and we construct the model hypervector

that holographically represents the function to approximate.

• We propose a novel HDC encoder that includes pertur-

bations via randomly dropped dimensions to propagate

the uncertainty estimation in our DiceHD framework. Our

solution, unlike existing BNN methods, introduces few

complications to the original regression, simplifies the train-

ing, and enables computational reuse in the inference. In

Section III-B, we show how this noisy mapping to hy-

perdimensional space effectively approximates the posterior

distribution.

• Our design is evaluated on both CPU and FPGA plat-

forms. We verify DiceHD using several toy regression tasks

and multiple real-world datasets. Through visualization, we

show that DiceHD is able to generate meaningful uncertainty

estimation. Results on real data show that our framework

significantly improves the training and inference efficiency,

compared to BNN baselines. Compared to BNN on FPGA

(or CPU), our design shows a noticeable speedup of up

to 2.5× (17×) for training and 8×(748×) for inference.

DiceHD provides 84× (3740×) better energy efficiency for

training (inference).

II. RELATED WORK

Bayesian Inference: The Bayesian paradigm utilizes prob-

ability instead of point estimates to represent the belief of

models. This probability is updated as the model observes

more training data points. In the past few years, there has

been a resurgence of interest in Bayesian statistics due to the

need for more informative ML models. There are multiple

challenges in making modern ML algorithms Bayesian, es-

pecially if they are deep. Most of the existing works take

the path of approximating the posterior distribution, which

is often intractable. Markov Chain Monte Carlo (MCMC)

methods have been used to generate samples from desired

posterior distributions [21]–[23]. However, MCMC methods

are hardly scalable, memory-hungry, and time-consuming.

Therefore, methods in the family of Stochastic Variational

Inference (SVI) are considered more suitable for the task.

SVI methods learn a tractable variational distribution that is as

close as possible to the original posterior. Nevertheless, SVI

methods require significant training time and large compu-

tational costs due to the more complex networks [16], [17].

Some prior works enable Bayesian inference through ensemble

methods [18], [19], [24]–[27]. Many of them approximate the

posterior distribution by training multiple models and capture

the model uncertainty through model averaging. However,

training multiple models inevitably increases the runtime

and energy costs. MC-Dropout [18] alleviates this significant

overhead by leveraging neural network dropout layers. It en-

ables uncertainty estimation without training multiple models.

However, the computationally heavy DNN training process

and the multi-layer deep structure significantly increase its

energy consumption. This shows the need for a more efficient

alternative ML algorithm.

Hyperdimensional Computing: For machine learning in

resource-limited environments, HDC is a more efficient al-

ternative computing paradigm compared to DNN. Previous

works have successfully applied HDC to ML tasks of various

natures. Considering supervised training as an example, prior

works propose HDC-based algorithms for real-world regres-

sion [11], [28], bio-signal processing [29], [30], genome se-

quencing [31], [32], drug discovery [33], outlier detection [34],

and spam detection [35]. These works have shown that HDC-

based ML achieves notable energy savings and speedups in

both training and testing, making HDC suitable for machine

learning on CPUs even with tight power budgets. In addi-

tion, researchers have explored various hardware acceleration

strategies to further enhance efficiency [7], [8], [11], [36], [37].

For example, the recent work [11] accelerates the HDC-based

regression using FPGA and outperforms several baselines on

runtime and energy costs. However, existing HDC algorithms

failed to include uncertainty while doing predictions; and our

goal is to fix this shortcoming while maintaining the high

efficiency of HDC.

III. DiceHD: ENABLING EFFICIENT BAYESIAN HDC

Fig. 1 presents an overview of our DiceHD, and compares it

with the non-Bayesian hyperdimensional regression algorithm.

In Section III-A, we briefly introduce the regular algorithm that

only provides point estimates. In Section III-B, we propose to

incorporate uncertainty estimation into HDC-based regression.

A. VFA & Hyperdimensional Regression

In this section, we provide the intuition behind the HDC-

based regression algorithm from the angle of Vector Function

Architecture (VFA) [20]. VFA is regarded as an extension

of the hypervector-based representation in HDC mathematics.

One key insight of VFA is that we can define a function space

where functions can be represented using high-dimensional

vectors. More importantly, HDC operations are compatible and

meaningful in this function space. To begin with, we define

a function in the form of a weighted kernel sum: f(x) =

Authorized licensed use limited to: Access paid by The UC Irvine Libraries. Downloaded on August 27,2024 at 07:31:27 UTC from IEEE Xplore. Restrictions apply.

sn

sn-1

s1

Encoded Input
Hypervector S

Input
s

HDC

Encoder
SDSD-1S1

Regression Model
Hypervector R

RDRD-1R1

Predicted

Distribution

p(Vpred|s,R)

sn

sn-1

s1

Input
s

HDC

Encoder

Predicted

Value Vpred

HDC Bayesian Encoder

Random

Dimension

Drop

Encoded Input
Hypervector S

SDSD-1S1

Regression Model
Hypervector R

RDRD-1R1

Dropped

(a) Regular HDC Regression

(b) Bayesian HDC Regression

Multi-pass
Inference

Single Point
Estimate

μ σ

Fig. 1. Comparison between DiceHD and non-Bayesian HDC-based re-
gression algorithm: (a) Basic structure of regular regression that gives point
estimates. (b) Overview of our proposed DiceHD, which approximates
predictive distribution through a noisy HDC Bayesian encoder.

∑

k αkK(x−xk). When K is a universal, translation-invariant,

and positive-definite kernel, we can represent any continuous

function through this representation. αks are model parameters

learned via supervised training. The function representation is

obtained in VFA as follows:

f(x) =
∑

k αkK(x− xk) =
∑

k αkϕ(xk)ϕ(x) = yTk ϕ(x) (1)

where yk =
∑

k αkϕ(xk) is the vector representation of f(·)
and ϕ(·) is the mapping defined by the kernel K.

However, the exact mapping ϕ is often intractable if the

kernel implicitly maps inputs to an infinite-dimensional space

like the Radial basis function (RBF). There are also unknown

kernels that do not have explicit mapping. On the other

hand, functions represented using kernels need to accumulate

through all training samples for each prediction, which is

not scalable. To solve these challenges, prior work in [38]

proposes that with a large but finite dimensional mapping Z,

the shift-invariant kernel K as the one defined above can be

approximated using inner-products:

K(xm − xn) ≈ ZD(xm)TZD(xn) (2)

where D is the dimensionality of the mapping. Authors in [38]

provide several practical measures to design the mapping Z

that corresponds to known kernels. In this paper, we focus on

one of them that approximates the RBF kernel and it is defined

as follows:

ZD(x) =

√

2

D
cos(H⃗x+ B⃗) (3)

H⃗ is a vector of dimension D with its elements randomly

sampled from standard Gaussian distribution N (0, 1) and B⃗

functions as a bias vector with elements sampled from uniform

distribution U(0, 2π). Once they are randomly generated, we

keep them fixed during the later learning and inference.

In HDC-based regression, by using Equation (1), (2),

and (3), we can construct a hyperdimensional representation

of function, similar to yk, with the mapping ZD: R⃗ =

SD

S2

S1

snsn-1s1

 ×××
H11 H1 n-1 H1 n

H21 H2 n-1 H2 n

HD1 HD n-1 HD n

Gaussian
Distribution

N (0,1)

cos(.)

Encoded
Input

S

Input
s

Encoding
Matrix

H

b1

b2

bD

+

+

+

Bias B

Uniform
Distribution
U (0,2π)

cos(.)

cos(.) mD

m2

m1

Random
Mask
M

×

×

×

Bernoulli
Distribution

B (pB)

Fig. 2. Overview of DiceHD HDC Bayesian encoder: input s⃗ is mapped to

hypervector S⃗ through a stochastic encoding process.

∑

k αkZD(xk). We refer to this mapping ZD as an HDC

encoder that outputs encoded hypervectors ZD(x). The rep-

resentation R⃗ shows that we can approximate the function

through a weighted sum of encoded training samples, which

makes itself also a hypervector. In addition, we refer to R⃗

as the model hypervector, and the inference is simply the

inner-product between the model and encoded hypervector:

f(x) = R⃗TZD(x). Notice that the complex conjugate is

omitted because ZD(x) has only real components. To update

the model hypervector R⃗, we feedback the prediction error

as the weight for the corresponding encoded input. Assume a

true value Vtrue and a predicted value Vpred = R⃗TZD(xk), the

update step for the model is: R⃗ = R⃗+(Vtrue−Vpred)ZD(xk).
This update process is essentially tuning the parameter αk for a

particular training sample xk through the hypervector element-

wise add/subtract operation, which is highly parallelizable and

lightweight.

B. Hyperdimensional Regression with Uncertainty Estimation

In this section, we propose a noisy HDC encoder and

describe how it contributes to an HDC-based regression

with Bayesian uncertainty included. The regression men-

tioned above with VFA provides only point estimates with

a deterministic HDC encoder, which is unable to inject the

uncertainty during training. We found that it is effective to

randomly drop dimensions in the HDC encoder to implement

stochastic perturbations.

1) HDC Bayesian Encoder: Fig. 2 shows the structure of

the HDC Bayesian encoder with randomly dropped dimen-

sions. Our design follows the VFA mathematics as introduced

in Section III-A. In this figure, we assume a multi-feature

input vector s⃗ = {s1, s2, . . . , sn} instead of a single value x.

We define an encoder matrix H = {H⃗1, H⃗2, . . . , H⃗n} with

size n × D, of which the elements are randomly generated:

H⃗n ∈ ND(0, 1). The bias is defined as: B⃗ ∈ UD(0, 2π).
The main difference in this encoder is that some of the

dimensions in the encoded hypervector S⃗ are set to zeros or

dropped. We show this modification in Fig. 2 as a randomly

generated mask M⃗ with its elements m ∈ Bernoulli(pB).
For performance considerations on hardware platforms, the

encoded inputs without dropped dimensions may be saved for

computational reuse in the iterative model update as well as for

inference. As shown in the figure, the encoded hypervectors

Authorized licensed use limited to: Access paid by The UC Irvine Libraries. Downloaded on August 27,2024 at 07:31:27 UTC from IEEE Xplore. Restrictions apply.

are represented as:

S⃗ = ZD(s⃗) =

√

2

D
cos(HT s⃗+ B⃗) ◦ M⃗ (4)

2) Approximate Posterior Distribution: We show next how

DiceHD enables Bayesian inference through this noisy en-

coder. Fig. 3 presents the model update process in DiceHD. If

we recall the regular HDC regression inference equation from

Section III-A, we get the new single-pass inference equation:

Vpred = R⃗T S⃗ = R⃗T

(

√

2

D
cos(HT s⃗+ B⃗) ◦ M⃗

)

(5)

To model the uncertainty, it is crucial to learn the posterior

distribution conditioned on all training samples. It is defined

using the Bayes’ theorem as follows:

p(R⃗|S,V) =
p(V |S, R⃗)p(R⃗)

∫

p(V |S, R⃗)p(R⃗)dR⃗
(6)

where {S,V} refers to the training dataset. The posterior is

focused on R⃗, since the training process only updates the

model hypervector R⃗ instead of the HDC encoder H and

B⃗. The prediction with uncertainty is obtained through the

predictive distribution:

p(Vpred|s⃗,S,V) =

∫

p(Vpred|s⃗, R⃗)p(R⃗|S,V)dR⃗ (7)

The main difficulty in calculating the accurate predictive

distribution is that the Equation (6) is intractable, and more

specifically, the integration over the model R⃗. Therefore, the

only way to deal with it is by approximating the intractable

posterior distribution. One standard method is Variational

Inference as mentioned in Section II, where a surrogate vari-

ational distribution q(R⃗) is used in place of the real posterior

p(R⃗|S,V). To ensure that q(R⃗) is a good approximation, we

can minimize the Kullback–Leibler (KL) divergence between

these two distributions: min
q(R⃗) KL

(

q(R⃗)||p(R⃗|S,V)
)

. In

most cases, KL divergence is not minimized in its original

form because this requires again the exact posterior. Instead,

we rearrange the terms and maximize the log evidence lower

bound [39]:

J =
∫

q(R⃗)log p(V |S, R⃗)dR⃗− KL(q(R⃗)||p(R⃗)) (8)

The first term in this objective can be factorized as

a sum in terms of each training sample {s⃗k, Vk}, as-

suming K is the total number of training data points:
∑K

k=1

∫

q(R⃗)log p(V̂k|s⃗k, R⃗)dR⃗. Then we apply Monte Carlo

integration for each term in this sum to avoid the exact com-

putation of integral, i.e., we sample a realization R̂ ∼ q(R⃗).
In addition, we assume that p(V̂k|s⃗k, R⃗) follows a Gaussian

distribution with precision τ and mean Vk. Finally, we get the

corresponding loss function:

LMC = −
∑K

k=1 log pN (Vk,τ−1)(V̂k|s⃗k, R⃗) + KL(q(R⃗)||p(R⃗)) (9)

To support the variational inference as formulated above,

we need to construct a proper variational distribution q(R⃗). In

sn

sn-1

s1

Encoded Input
Hypervector S

Input
s

HDC

Bayesian

Encoder

SDSD-1S1

Regression Model
Hypervector R

RDRD-1R1

RTS
Predicted

Value Vpred

True Value

Vtrue

Error Vtrue-Vpred

Lightweight
Model Update

with L2 Regularization

Fig. 3. Model hypervector update process in DiceHD: minimize the KL
divergence through lightweight hypervector operations.

DiceHD, this is achieved through adding a random mask in

the HDC Bayesian encoder. Equation (5) can be rearranged

as: Vpred = (R⃗ ◦ M⃗)T (
√

2
D
cos(HT s⃗ + B⃗)). This allows us

to define the variational distribution on the model hypervector

R⃗ as: q(R⃗) =
∏D

d=1 q(rm), where q(rm) is assumed to be a

Gaussain mixture model with a Bernoulli mask embedded:

q(rm) = pBN (r, σ2) + (1− pB)N (0, σ2) (10)

In this equation, pB is the probability for the Bernoulli mask

to be 1, i.e., the corresponding dimension is retained. r is the

expected mean value of the model hypervector element and σ

is a positive standard deviation of the Gaussian model. From

Equation (10), we observe that a noisy HDC encoder not only

perturbs the encoded results but also can be equivalently added

onto the variational distribution q(R⃗) as element dropping.

In this case, the KL divergence term in Equation (9) can be

further approximated by following [18]. It provides a way to

approximate the KL divergence between a Gaussian mixture

and a single Gaussian, especially when the dimensionality is

high and therefore applies to our case:

L ∝
K
∑

k=1

1

2K
(Vk − V̂k)

2 +
pB

2τK
||R⃗||22 (11)

This can also be intuitively understood as a likelihood function

plus an extra regularization term. They ensure that the regres-

sion will converge to the true values, and prevent overfitting

and deviating too much from the prior distribution through the

KL divergence.

One advantage of regular HDC-based algorithms lies in the

efficient training process. Our DiceHD maintains a lightweight

hypervector update process compared to the one defined in

Section III-A. As presented in Fig. 3, the model hypervector is

updated with feedback from the prediction error Vtrue−Vpred.

The loss function in Equation (11) can be minimized through

simple element-wise operations with learning rate γ:

R⃗ =
(

1−
γpB

τ

)

R⃗+ γ(Vtrue − Vpred)S⃗ (12)

3) Bayesian Inference: In inference, we apply model av-

eraging by having testing samples evaluated for several iter-

ations, and then obtain the mean predicted value µVpred
and

standard deviation σVpred
. During each iteration, the random

mask is regenerated for R⃗. We can also compute the log

Authorized licensed use limited to: Access paid by The UC Irvine Libraries. Downloaded on August 27,2024 at 07:31:27 UTC from IEEE Xplore. Restrictions apply.

[+]

cos

[+]

S
1

1

drop IPseed

S
1

n

S
B

1
S

B
n

Input

Encoding Matrix

coscos

AXI Interconnect IP

bias HDV reg HDV

Vp

L2 IP

Vt

AXI DMA

CPUCPU

R
e

g
iste

rs

buffers

HBM or BRAM

AXI AXI AXI AXI

B

T

(c) Systolic Array IP

E1

R1 R2

E2

E3
E4

R3 R4

Ei

A
d

d
re

ss

1101…01

BRAM

Fixed-point

(b) Cosine IP

(a)

Fig. 4. (a) Online bayesian learning FPGA acceleration architecture. Vp is the batch prediction value vector, and Vt is the true value vector. (b) The cosine
kernel function IP implementation. (c) The systolic array IP architecture design.

predictive distribution, i.e., log-likelihood, by a Monte Carlo

integration of Equation (7):

log p(Vpred|s⃗, s⃗k, Vk) ≈

∫

p(Vpred|s⃗, R⃗)q(R⃗)dR⃗

≈ log

(

1

T

∑

T

p(Vpred|s⃗, R⃗)

)

= logsumexp

[

−
1

2
τ(Vtrue − Vpred)

2

]

− C

(13)

where the constant C = logT − 1
2 log2π − 1

2 logτ−1. T is

the number of inference passes and we use the variational

distribution q(R⃗) to replace the intractable p(R⃗) before Monte

Carlo integration.

To summarize, the noisy DiceHD HDC encoder contributes

to a practical variational distribution that can be efficiently

optimized, leading to a posterior predictive distribution for

regression with uncertainty estimation. Compare to the reg-

ular HDC-based regression, the whole process especially the

training still remains lightweight as defined in Section III-A.

C. FPGA acceleration for DiceHD

Fig. 4(a) shows the acceleration architecture of DiceHD

on FPGA. The host CPU will load input data and random

seed into the kernel FPGA via Xilinx AXI DMA IP. The

random seed is mainly used for the drop IP to generate

random numbers. For each training or inference iteration, the

drop IP will decide each dimension of the hypervector to be

0 (drop) or the original value (not drop). As is shown in

Figure 4(b), for hardware cosine function implementation, we

adopt the triangle codebook method to efficiently implement

cosine encoder IP for kernel encoding [7], [40]. Compared

to Taylor expansion or Xilinx CORDIC IP, using on-chip

BRAM to store pre-compute cos value and treating each fixed-

point number as memory access address are much faster and

more efficient on FPGA. Specifically, since each hypervector

element’s precision is fixed-point, we can use it as an input

address to access on-chip storage (such as BRAM) where we

pre-store all possible cosine values. Since for cosine function,

its valid input is only in the range [−π, π], we will first

quantize the input element into this range and then access

BRAM to get the corresponding cosine value.

UncertaintyMean

(a) (b)

y

-4 -2 0 2 4

0.4

0.2

0

-0.2

-0.4

-0.6

0.4

0.2

0

-0.2

-0.4

-4 -2 0 2 4 6 8

y

x x

Training Data Testing Data

Fig. 5. Visualizations for the DiceHD regression with uncertainty estimation

Uncertainty

(pB=0.975)

Mean y

-5 -4 -3 -2 -1 0
x

Training Data

Testing Data

4.0

3.5

3.0

2.5

2.0

1.5

1.0

Uncertainty

(pB=0.95)

Fig. 6. DiceHD uncertainty estimation with different Bernoulli probabilities

After finishing the encoding process, the encoded hypervec-

tor will simultaneously forward to systolic array IP and AXI

Interconnect IP, which means we do not need to conduct the

rest training of inferring epochs encoding operation anymore.

We use a Systolic Array IP to perform regression operations

and generate the predicted value. As is shown in Figure 4,

to simplify the FPGA synthesize and placement difficulty,

instead of using a single large dimension systolic array, we

cut the hypervector regression operation into small chunks [41]

and assign each small chunk computation to a small systolic

array IP. After all small systolic array finish computation, we

perform a concatenation operation to generate the predicted

value Vp. Compared to traditional DNN training [42], an HDC-

based FPGA accelerator is much easier to support on-chip

online learning, which means our platform can support both

training and inference. The first advantage is that HDC-based

model training does not need too much power-hungry DSP.

The second advantage is that we only need to update a single

hypervector instead of multiple layers.

IV. EXPERIMENTAL RESULTS

A. Experimental setup

To evaluate our Bayesian HDC framework, we imple-

ment DiceHD on both CPU and FPGA platforms. The CPU

Authorized licensed use limited to: Access paid by The UC Irvine Libraries. Downloaded on August 27,2024 at 07:31:27 UTC from IEEE Xplore. Restrictions apply.

TABLE I
REGRESSION QUALITY COMPARISON ON REAL-WORLD TASKS ACROSS DIFFERENT BAYESIAN INFERENCE ALGORITHMS

R
2 Log-likelihood

Dataset
Variational

Inference
PBP

Stein

VI

MC

Dropout

Our

Design

Variational

Inference
PBP

Stein

VI

MC

Dropout

Our

Design

Boston Housing 0.86 0.89 0.88 0.89 0.89 -2.90 -2.57 -2.68 -2.40 -2.52
Propulsion Plant 0.87 0.87 0.84 0.99 0.98 3.73 3.73 3.68 4.38 4.12

Power Plant 0.95 0.95 0.94 0.95 0.94 -2.89 -2.84 -3.17 -2.80 -2.84
Wine Quality Red 0.39 0.40 0.41 0.42 0.39 -0.98 -0.97 -0.97 -0.92 -0.97
Computer Activity - - 0.97 0.97 0.96 - - -3.15 -2.49 -2.68

Stock - - 0.98 0.98 0.98 - - -2.14 -1.26 -1.33
Geographical Analysis - - 0.68 0.68 0.68 - - 0.76 0.77 0.76

Fig. 7. Training runtime speedup comparison on CPU and two FPGAs. The speedup is normalized to the BNN (MC-Dropout) runtime on the CPU.

Fig. 8. Inference runtime speedup comparison. The speedup is normalized to the BNN (MC-Dropout) runtime on the CPU.

is Intel Core i7-10700; and for FPGA, we choose Xilinx

Zynq ZCU104 and Alveo U50. Our CPU implementation

uses Python with Scikit-learn. We also used the Xilinx Vitis

framework to conduct the communication between CPU and

FPGA via PCIe [43]. We select multiple regression workloads

that are comprised of toy datasets as well as real-world

regression tasks. We provide visualizations for the DiceHD

regression and uncertainty estimation on 1-D toy datasets.

As for multi-dimensional practical regression tasks, we select

several publicly available datasets from UCI Machine Learning

Repository [44] and OpenML [45]. Our baselines include

several widely-deployed BNN algorithms such as direct varia-

tional inference (VI), probabilistic backpropagation (PBP), and

dropout-based approximation [18], [25], [27], [46]–[48]. The

neural network used in BNN baselines has two hidden layers

and each has 50 neurons. For DiceHD, we use hypervectors

with dimensionality D = 2000. Similar to other dropout-

based BNNs, we use grid search to find the suitable setting of

Bernoulli probability pB (in the range of 0.95 to 0.995) and

estimate the precision τ . We set the training iterations to 200

and the number of inference iterations to T = 300. For each

practical regression task, we use 20 random splits and average

the prediction, training runtime, and testing runtime.

B. Toy Workloads Visualization

In Fig. 5. we show the visualization of DiceHD Bayesian

regression on a noisy and partially observable sine function.

For (a) and (b), the parts of available training data points

are different. The mean value prediction is shown in a solid

curve and the uncertainty (±3σ) is shown as the shady area.

We notice that DiceHD predicts the testing data with lower

accuracy where training data is not presented, however, it gives

a significantly higher uncertainty in those areas. This shows

that the DiceHD model is not confident about the prediction.

In Fig. 6, we visualize the results of DiceHD with a

slightly more complex example where training data points are

separated into two clusters. We show the effect of different

Bernoulli probabilities on uncertainty estimation: the range

of uncertainty increases when we tune down pB and vice

versa. As shown in this figure, the model is highly unsure

about the prediction in −3 < x < −2 due to the lack of

training data, and the prediction converges with the presence of

training data points. Notice that the uncertainty is not zero even

with training data, and this is because the data contains noise

during training. It is expected during Bayesian inference since

the model uncertainty should also account for the observation

noise.

Authorized licensed use limited to: Access paid by The UC Irvine Libraries. Downloaded on August 27,2024 at 07:31:27 UTC from IEEE Xplore. Restrictions apply.

TABLE II
DESIGN ACCELERATION ON XILINX ALVEO U50 WHEN BATCH SIZE IS 8, FREQUENCU IS 200 MHZ AND THE FPGA POWER CONSUMPTION IS 22W. AT

ZYNQ ULTRASCALE+ ZCU104, THE BATCH SIZE IS 1, FREQUENCY IS 200MHZ, AND THE FPGA POWER CONSUMPTION IS 7.7W.

Xilinx Alveo U50 ZCU 104

Name LUT FF DSP BRAM URAM LUT FF DSP BRAM URAM

Total 797K 1458K 3 806 0 167.6K 227.5K 3 132 0
Available 872K 1743K 5952 1344 640 230K 460.8K 1728 312 96
Utilization 91.3% 83.6% ∼0% 59.9% 0% 72.8% 49.3% ∼0% 42.3% 0%

Fig. 9. Training energy efficiency comparison across hardware platforms. The results are normalized to BNN (MC-Dropout) energy consumption on CPU.

Fig. 10. Cross-platform inference energy efficiency comparison. The results are normalized to BNN (MC-Dropout) energy consumption on CPU.

C. Regression Accuracy & Uncertainty Estimation

Table I compares the Bayesian inference quality of DiceHD

with baseline BNN algorithms. We implement MC-Dropout

using the open-sourced code provided by the original authors

and Stein-VI using the Pyro framework [49]. We report the

results for 7 different datasets that focus on different regression

tasks. The results of some datasets are omitted for variational

inference and PBP since they are not reported in original

papers. We select two metrics, coefficient of determination

(R2) and log-likelihood, to evaluate the regression quality and

the uncertainty estimation respectively. The log-likelihood, as

defined in Section III-B3, represents the posterior probability

density function for the prediction. For both metrics, the

higher value means better quality. In terms of the regression

quality across all tested datasets, DiceHD achieves comparable

R2 value and log-likelihood to the best algorithm among

baselines.

We also observe that, on average, MC-Dropout achieves the

highest R2 and log-likelihood when compared to other BNNs.

In addition, it also has a smaller computational overhead

than variational inference and a relatively more lightweight

structure than the probabilistic network in PBP, making itself

a strong baseline. In the following sections, we will focus

on comparing MC-Dropout with our DiceHD in terms of

Bayesian inference efficiency on various hardware platforms.

D. Runtime & Energy Efficiency

This parameter tuning overhead is not included in the

training runtime for both DiceHD and MC-dropout, however,

our method has a much smaller overhead thanks to the fast

learning and inference.

Table II presents the resource utilization of DiceHD accel-

eration on Xilinx Alveo U50 and Zynq Ultrascale+ ZCU104.

We suppose the batch size and frequency for both training and

inferring are 8 and 200 MHz on Alveo U50. For ZCU104, due

to limited resources, we set the batch size to 1 and keep the

FPGA frequency still as 200 MHz. As the baseline to our

FPGA acceleration, we also implement MC-Dropout on these

two FPGAs mentioned above. We use Xilinx deep-learning

processor unit (DPU) [50] for efficient implementation of

the BNN inference. We perform the training acceleration

on FPGA boards based on previous DNN FPGA training

frameworks [42], [51].

Fig. 7 and Fig. 8 compare the training and inference

runtime of DiceHD with BNN (MC-Dropout) when running

both algorithms on CPU (Intel Core i7-10700) and FPGAs

(Zynq ZCU104 and Alveo U50). The results are normalized

as speedup when compared to MC-Dropout runtime on the

CPU. We compare the training runtime for each regression

task in Fig. 7 and compute the geometric average over all the

tasks. DiceHD is, on average, 60% faster than the baseline on

CPU and 17× faster after our FPGA acceleration on Alveo

U50. In contrast, MC-Dropout on Alveo U50 shows a smaller

Authorized licensed use limited to: Access paid by The UC Irvine Libraries. Downloaded on August 27,2024 at 07:31:27 UTC from IEEE Xplore. Restrictions apply.

speedup of 6.7×, compared to its CPU implementation. As

for results collected on the Zynq FPGA, the speedup values

are generally lower (about 4.2× for HDC and 1.1× for MC-

Dropout) mainly because of its low power consumption. Fig. 8

compares the inference runtime. On average, DiceHD achieves

an 11× speedup over the MC-dropout baseline on CPU; the

speedup is 187× and 748× if with FPGA acceleration on Zynq

ZCU104 and Alveo U50.

We also compare the energy efficiency between DiceHD

and the baseline BNN (MC-Dropout) in terms of the training

cost (Fig. 9 and inference cost (Fig. 10. On CPU, thanks to

the smaller runtime costs, our HDC-based method provides

significantly better energy efficiency than the baseline, i.e.,

1.6× (11×) improvement for training (inference). With FPGA

acceleration, DiceHD achieves up to 84× and 3740× better

energy efficiency on Alveo U50 for training and inference,

respectively. Compared to the CPU, the FPGA acceleration

shows advantages in both power consumption and runtime.

The power consumption of DiceHD on Alveo U50 is only

22W and 7.7w for Zynq ZCU104, which are much smaller

than the CPU (around 100W).

V. CONCLUSION

In this paper, we propose DiceHD, a hyperdimensional

Bayesian framework that enables efficient uncertainty estima-

tion for HDC-based regression algorithm. We propose a noisy

HDC encoder that leads to an approximation of the true pos-

terior distribution. DiceHD provides meaningful uncertainty

estimations while also achieving significant speedup in both

training and inference compared to the BNN baseline.

ACKNOWLEDGEMENTS

This work was supported in part by DARPA Young Faculty

Award, National Science Foundation #2127780 and #2312517,

and #2319198, Semiconductor Research Corporation (SRC),

Office of Naval Research, grants #N00014-21-1-2225 and

#N00014-22-1-2067, the Air Force Office of Scientific Re-

search, grants #FA9550-22-1-0253, and generous gifts from

Xilinx and Cisco.

REFERENCES

[1] A. Hernandez-Cane, N. Matsumoto et al., “Onlinehd: Robust, efficient,
and single-pass online learning using hyperdimensional system,” in 2021

DATE. IEEE, 2021, pp. 56–61.

[2] H. Fang, B. Taylor et al., “Neuromorphic algorithm-hardware codesign
for temporal pattern learning,” in DAC. IEEE, 2021, pp. 361–366.

[3] P. Poduval, Y. Ni et al., “Adaptive neural recovery for highly robust
brain-like representation,” in Proceedings of the 59th ACM/IEEE Design

Automation Conference, 2022, pp. 367–372.

[4] P. Kanerva, “Hyperdimensional computing: An introduction to comput-
ing in distributed representation with high-dimensional random vectors,”
Cognitive computation, vol. 1, no. 2, pp. 139–159, 2009.

[5] P. Poduval, H. Alimohamadi et al., “Graphd: Graph-based hyperdi-
mensional memorization for brain-like cognitive learning,” Frontiers in

Neuroscience, vol. 16, p. 757125, 2022.

[6] C. J. Stoodley, “The cerebellum and cognition: evidence from functional
imaging studies,” The Cerebellum, vol. 11, no. 2, pp. 352–365, 2012.

[7] M. Imani, Z. Zou et al., “Revisiting hyperdimensional learning for fpga
and low-power architectures,” in 2021 IEEE HPCA. IEEE, 2021, pp.
221–234.

[8] J. Morris, K. Ergun, B. Khaleghi et al., “Hydrea: Towards more
robust and efficient machine learning systems with hyperdimensional
computing,” in 2021 Design, Automation & Test in Europe Conference

& Exhibition (DATE). IEEE, 2021, pp. 723–728.

[9] Y. Ni, Y. Kim, T. Rosing, and M. Imani, “Algorithm-hardware co-design
for efficient brain-inspired hyperdimensional learning on edge,” in 2022

Design, Automation & Test in Europe Conference & Exhibition (DATE).
IEEE, 2022, pp. 292–297.

[10] M. Imani, A. Zakeri et al., “Neural computation for robust and holo-
graphic face detection,” in Proceedings of the 59th ACM/IEEE Design

Automation Conference, 2022, pp. 31–36.

[11] A. Hernández-Cano, C. Zhuo et al., “Reghd: Robust and efficient re-
gression in hyper-dimensional learning system,” in 2021 58th ACM/IEEE

Design Automation Conference (DAC). IEEE, 2021, pp. 7–12.

[12] Y. Ni, M. Issa et al., “Hdpg: hyperdimensional policy-based rein-
forcement learning for continuous control,” in Proceedings of the 59th

ACM/IEEE Design Automation Conference, 2022, pp. 1141–1146.

[13] Y. Ni, D. Abraham, M. Issa, Y. Kim, P. Mercati, and M. Imani, “Efficient
off-policy reinforcement learning via brain-inspired computing,” arXiv

preprint arXiv:2205.06978, 2022.

[14] M. Issa, S. Shahhosseini et al., “Hyperdimensional hybrid learning on
end-edge-cloud networks,” in 2022 IEEE 40th International Conference

on Computer Design (ICCD). IEEE, 2022, pp. 652–655.

[15] H. Kumar et al., “Towards improving the trustworthiness of hardware
based malware detector using online uncertainty estimation,” in DAC.
IEEE, 2021, pp. 961–966.

[16] C. Blundell, J. Cornebise, K. Kavukcuoglu, and D. Wierstra, “Weight
uncertainty in neural network,” in International conference on machine

learning. PMLR, 2015, pp. 1613–1622.

[17] M. D. Hoffman, D. M. Blei, C. Wang, and J. Paisley, “Stochastic
variational inference,” Journal of Machine Learning Research, 2013.

[18] Y. Gal and Z. Ghahramani, “Dropout as a bayesian approximation:
Representing model uncertainty in deep learning,” in international

conference on machine learning. PMLR, 2016, pp. 1050–1059.

[19] B. Lakshminarayanan, A. Pritzel, and C. Blundell, “Simple and scalable
predictive uncertainty estimation using deep ensembles,” Advances in

neural information processing systems, vol. 30, 2017.

[20] E. P. Frady, D. Kleyko, C. J. Kymn, B. A. Olshausen, and F. T. Sommer,
“Computing on functions using randomized vector representations,”
arXiv preprint arXiv:2109.03429, 2021.

[21] S. Duane, A. D. Kennedy, B. J. Pendleton, and D. Roweth, “Hybrid
monte carlo,” Physics letters B, vol. 195, no. 2, pp. 216–222, 1987.

[22] R. M. Neal et al., “Mcmc using hamiltonian dynamics,” Handbook of

markov chain monte carlo, vol. 2, no. 11, p. 2, 2011.

[23] R. M. Neal, Bayesian learning for neural networks. Springer Science
& Business Media, 2012, vol. 118.

[24] T. Fushiki, “Bootstrap prediction and bayesian prediction under mis-
specified models,” Bernoulli, vol. 11, no. 4, pp. 747–758, 2005.

[25] Y. Gal, J. Hron, and A. Kendall, “Concrete dropout,” Advances in neural

information processing systems, vol. 30, 2017.

[26] I. Osband, C. Blundell et al., “Deep exploration via bootstrapped dqn,”
Advances in neural information processing systems, vol. 29, 2016.

Authorized licensed use limited to: Access paid by The UC Irvine Libraries. Downloaded on August 27,2024 at 07:31:27 UTC from IEEE Xplore. Restrictions apply.

[27] X. Fan, S. Zhang, K. Tanwisuth et al., “Contextual dropout: An efficient
sample-dependent dropout module,” arXiv preprint arXiv:2103.04181,
2021.

[28] M. Hersche et al., “Integrating event-based dynamic vision sensors with
sparse hyperdimensional computing: a low-power accelerator with on-
line learning capability,” in Proceedings of the ACM/IEEE International

Symposium on Low Power Electronics and Design, 2020, pp. 169–174.
[29] A. Burrello et al., “Hyperdimensional computing with local binary pat-

terns: One-shot learning of seizure onset and identification of ictogenic
brain regions using short-time ieeg recordings,” IEEE Transactions on

Biomedical Engineering, vol. 67, no. 2, pp. 601–613, 2019.
[30] Y. Ni, N. Lesica, F.-G. Zeng, and M. Imani, “Neurally-inspired hyper-

dimensional classification for efficient and robust biosignal processing,”
in Proceedings of the 41st IEEE/ACM International Conference on

Computer-Aided Design, 2022, pp. 1–9.
[31] Z. Zou, H. Chen et al., “Biohd: an efficient genome sequence search

platform using hyperdimensional memorization,” in Proceedings of the

49th Annual International Symposium on Computer Architecture, 2022,
pp. 656–669.

[32] H. E. Barkam, S. Yun, P. R. Genssler et al., “Hdgim: Hyperdimensional
genome sequence matching on unreliable highly scaled fefet,” in DATE.
IEEE, 2023, pp. 1–6.

[33] D. Ma, R. Thapa, and X. Jiao, “Molehd: Drug discovery us-
ing brain-inspired hyperdimensional computing,” arXiv preprint

arXiv:2106.02894, 2021.
[34] R. Wang, X. Jiao, and X. S. Hu, “Odhd: one-class brain-inspired

hyperdimensional computing for outlier detection,” in Proceedings of

the 59th ACM/IEEE Design Automation Conference, 2022, pp. 43–48.
[35] R. Thapa, B. Lamichhane, D. Ma, and X. Jiao, “Spamhd: Memory-

efficient text spam detection using brain-inspired hyperdimensional
computing,” in ISVLSI. IEEE, 2021, pp. 84–89.

[36] B. Khaleghi et al., “tiny-hd: Ultra-efficient hyperdimensional computing
engine for iot applications,” in DATE. IEEE, 2021, pp. 408–413.

[37] A. Kazemi, F. Müller, M. M. Sharifi, H. Errahmouni et al., “Achiev-
ing software-equivalent accuracy for hyperdimensional computing with
ferroelectric-based in-memory computing,” Scientific reports, vol. 12,
no. 1, p. 19201, 2022.

[38] A. Rahimi and B. Recht, “Random features for large-scale kernel
machines,” NIPS, vol. 20, 2007.

[39] C. M. Bishop and N. M. Nasrabadi, Pattern recognition and machine

learning. Springer, 2006, vol. 4, no. 4.
[40] H. Chen, M. Issa et al., “Darl: Distributed reconfigurable accelerator for

hyperdimensional reinforcement learning,” in Proceedings of the 41st

IEEE/ACM ICCAD, 2022, pp. 1–9.
[41] H. Chen, M. H. Najafi et al., “Full stack parallel online hyperdimensional

regression on fpga,” in 2022 IEEE 40th International Conference on

Computer Design (ICCD). IEEE, 2022, pp. 517–524.
[42] T. Wang, T. Geng, A. Li, X. Jin, and M. Herbordt, “Fpdeep: Scalable

acceleration of cnn training on deeply-pipelined fpga clusters,” IEEE

Transactions on Computers, vol. 69, no. 8, pp. 1143–1158, 2020.
[43] V. Kathail, “Xilinx vitis unified software platform,” in ACM/SIGDA

FPGA 2020, 2020, pp. 173–174.
[44] D. Dua and C. Graff, “UCI machine learning repository,” 2017.

[Online]. Available: http://archive.ics.uci.edu/ml
[45] J. Vanschoren, J. N. Van Rijn, B. Bischl, and L. Torgo, “Openml:

networked science in machine learning,” ACM SIGKDD Explorations

Newsletter, vol. 15, no. 2, pp. 49–60, 2014.
[46] A. Graves, “Practical variational inference for neural networks,” Ad-

vances in neural information processing systems, vol. 24, 2011.
[47] J. M. Hernández-Lobato and R. Adams, “Probabilistic backpropagation

for scalable learning of bayesian neural networks,” in International

conference on machine learning. PMLR, 2015, pp. 1861–1869.
[48] Q. Liu and D. Wang, “Stein variational gradient descent: A general

purpose bayesian inference algorithm,” Advances in neural information

processing systems, vol. 29, 2016.
[49] E. Bingham, J. P. Chen, M. Jankowiak et al., “Pyro: Deep Universal

Probabilistic Programming,” JMLR, 2018.
[50] X. Zhang et al., “Dnnexplorer: a framework for modeling and exploring

a novel paradigm of fpga-based dnn accelerator,” in ICCAD, 2020, pp.
1–9.

[51] Y. Tang, X. Zhang, P. Zhou, and J. Hu, “Ef-train: Enable efficient
on-device cnn training on fpga through data reshaping for online
adaptation or personalization,” ACM Transactions on Design Automation

of Electronic Systems (TODAES), vol. 27, no. 5, pp. 1–36, 2022.

Authorized licensed use limited to: Access paid by The UC Irvine Libraries. Downloaded on August 27,2024 at 07:31:27 UTC from IEEE Xplore. Restrictions apply.

